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We consider a fractional Josephson vortex in a long 0-� Josephson junction. A uniformly applied bias
current exerts a Lorentz force on the vortex. If the bias current exceeds the critical current, an integer fluxon
is torn off the � vortex and the junction switches to the voltage state. In the presence of thermal fluctuations the
escape process takes place with finite probability already at subcritical values of the bias current. We experi-
mentally investigate the thermally induced escape of a fractional vortex by high-resolution measurements of
the critical current as a function of the topological charge � of the vortex and compare the results to numerical
simulations for finite junction lengths and to theoretical predictions for infinite junction lengths. To study the
effect caused by the junction geometry we compare the vortex escape in annular and linear junctions.
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I. INTRODUCTION

Vortices in long Josephson junctions �LJJs� usually carry
a single magnetic-flux quantum �0 and therefore are called
fluxons. The study of fluxons has been attracting a lot of
attention during the last 40 years because of their interesting
nonlinear nature1–3 as well as because of possible
applications.4–7 Recently it was shown that one can create
and study experimentally vortices that carry only a fraction
of the magnetic-flux quantum. One can distinguish two dif-
ferent types of fractional vortices.

The first type appears in LJJs with a degenerate ground
state. For example, when the junction’s current-phase rela-
tion has a strong negative second harmonic, the Josephson
energy U��� has two equally deep minima in the interval
−� , . . . ,+� corresponding to the two degenerate ground
states with the phases �= ��=arccos�−jc1 /2jc2�, where jc1
and jc2 are the amplitudes of the first and the second harmon-
ics, respectively. Then one can have Josephson vortices �to-
pological solitons� that connect these two energy minima,
i.e., a vortex with the topological charge ��+	�−��−	�
=2� and magnetic flux �1=�0� /� and another one with the
topological charge 2�−2� and the flux �2=�0�1−� /��.
These so-called splintered vortices are solitons of a double
sine-Gordon equation and their physics was studied in sev-
eral theoretical works �see Ref. 8 and Refs. 34, 35, 39, and
40 therein�. The specific current-phase relation with degen-
erate ground state can be present either intrinsically or an
effective negative second harmonic may appear naturally or
can be obtained artificially in LJJs with fast alternating criti-
cal current density.9–11 In such a system the splintered vorti-
ces were observed experimentally.12 We do not study such
vortices here.

The second type of fractional vortices appears in the so-
called 0-� LJJs that can be fabricated using superconductors
with an anisotropic order parameter that changes sign de-
pending on the direction in k space �e.g., d-wave order pa-
rameter symmetry�13–16 or with an oscillating order param-
eter �e.g., with a ferromagnetic barrier�.17 0-� LJJs consist of
two parts: a 0 part, which would have a ground-state phase

�=0 if taken separately, and a � part, which would have a
ground-state phase � if taken separately �� junction�. In this
kind of junctions, the ground-state phase ��x� will have the
value 0 deep inside the 0 region and the value � deep inside
the � region. In the 
J vicinity of the 0-� boundary, ��x�
will continuously change from 0 to �, where 
J is the Jo-
sephson penetration depth. Because of the phase bending a
magnetic field �d� /dx localized in the 
J vicinity of the
boundary appears and a supercurrent �sin���x�� circulates
around it.18–20 The total magnetic flux localized at the 0-�
boundary is equal to +�0 /2. Since the Josephson phase is
2� periodic, its value can be −� inside the � region instead
of �. In this case, the supercurrent flows counterclockwise
and an antisemifluxon with the magnetic flux −�0 /2 is
formed. Semifluxons and antisemifluxons were observed
experimentally.13,14

It turns out that instead of a � discontinuity of the Joseph-
son phase at the 0-� boundary one can artificially create any
arbitrary � discontinuity at any point of the LJJ and the value
of � can be tuned electronically.21 At the resulting 0-�
boundary two types of vortices may exist:22 a direct vortex
with topological charge −� �−� vortex� and a complementary
vortex with topological charge 2�−� �2�−� vortex�. With-
out loosing generality we assume that 0���2�. Such vor-
tices are a generalization of semifluxons and antisemifluxons
discussed above. Only if their topological charge is less or
equal than 2� by absolute value, they are stable.23 Several
experiments with arbitrary fractional vortices were
reported.24,25 We are dealing with such fractional vortices
pinned at � discontinuity here.

By applying a spatially uniform bias current to a LJJ with
a � vortex, one exerts a Lorentz force which pushes the
vortex along the junction. Depending on the mutual polarity
of the vortex and the bias current, the direction of the force
can be adjusted. Since the vortex exists to compensate the
phase discontinuity, it is pinned at it, i.e., it may only bend
under the action of the Lorentz force but it cannot move
away from the discontinuity. However, increasing the bias
current, the force can be made strong enough to tear off a
whole integer fluxon out of a � vortex. The fluxon moves
away along the junction, leaving a complementary ��−2��
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vortex pinned at the discontinuity. Further dynamics leads to
the switching of the 0-� LJJ into the voltage state. In annular
LJJs, this process takes place when the normalized bias cur-
rent = I / Ic0 reaches the critical current of26,27

c��� = � sin��/2�
�/2

� , �1�

where Ic0= jcwL is the “intrinsic” critical current, which cor-
responds to the measurable critical current if �=0; w is the
LJJ width and L is its length. Due to thermal fluctuations, the
escape process described above will already take place with
finite probability at �c. In this paper, we study the ther-
mal escape of an arbitrary � vortex experimentally and com-
pare it to numerical simulations for finite junction lengths
and to theoretical predictions for infinite length.

The paper is organized as follows: in Sec. II, we briefly
review the thermal escape of the phase in a pointlike Joseph-
son junction. Then, in Sec. III, we discuss theoretically the
phase escape in a long JJ with a vortex and compare it with
our experimental findings in Sec. IV. The influence on junc-
tion geometry is further investigated in Sec. V.

II. POINTLIKE JOSEPHSON JUNCTION

In the Stewart-McCumber model28,29 �see Fig. 1�a��, the
dynamics of a current-biased pointlike JJ is described by an
equation of motion for the Josephson phase �

C��0

2�
��̈ +

1

R
��0

2�
��̇ + Ic sin��� − I = 0, �2�

where C is the effective shunt capacitance, R is the effective
shunt resistance of the JJ embedded in the bias circuitry, and
dots denote the derivative with respect to time. The equation
of motion Eq. �2� is equivalent to the damped motion of a
particle of mass m=C��0 /2�� along the generalized coordi-
nate � in a tilted washboard potential

U��� = − EJ�� + cos �� , �3�

where EJ=�0Ic /2� is the Josephson coupling energy, �see
Fig. 1�b��. The tilting angle of the potential is proportional to
the bias current = I / Ic applied.

The process of the particle escape from a metastable mini-
mum in this Kramers-like system30,31 corresponds to a tran-
sition of the JJ from a superconducting zero-voltage state to

a finite-voltage state. In the absence of thermal and quantum
fluctuations the junction switches from the zero-voltage
state, which corresponds to the particle being localized in
one of the potential wells, to a finite-voltage state, when the
minima disappear and the particle runs down the potential, at
�1. If, such as in our case, the temperature is finite, the
particle may escape from the well already at �1, being
thermally excited over the barrier.30–37

The rate at which this process occurs depends on the bar-
rier height

u0 = 2EJ��1 − 2 −  arccos��� �4�

and the small amplitude oscillation frequency of the particle
at the bottom of the well,

�0 =��2U/��2

m
= �p�1 − 2�1/4. �5�

Here, �p=�2�Ic /�0C is the plasma frequency. For
1−�1, Eq. �4� can be approximated as

u0 	 EJ
4�2

3
�1 − �3/2. �6�

In the thermal regime the escape of the particle from the well
occurs at a bias-current-dependent rate of30,31

��� = a
�0��

2�
exp
−

u0��
kBT

� , �7�

where a�1 is a damping-dependent prefactor. Knowing all
relevant junction parameters and the bath temperature T, one
can calculate the escape rate � of a current-biased pointlike
JJ.

III. LONG JOSEPHSON JUNCTION WITH A FRACTIONAL
VORTEX

Here, the considered system, a long JJ with a fractional
vortex is more complex than a pointlike JJ. In order to ac-
count for the spatial phase variation ��x�, one has to extend
the picture of the particle in a tilted washboard potential.
First, to take into account the finite junction length, one re-
places the pointlike particle in a one-dimensional �1D� po-
tential by an elastic string in an extended potential. Second,
the � vortex in the LJJ corresponds to a kink in the string, as
illustrated in Fig. 2.

The depinning process of a fractional vortex at �c���
�see Eq. �1��, described above, corresponds to the escape of
this string out of a metastable well. To find the effective
barrier height for this system, we map the multidimensional
system to a pointlike particle in an effective 1D potential. By
comparing the escape rate �, which we obtain by high-
resolution measurement of the depinning current, to the
known escape rate of a pointlike JJ, one can make a state-
ment about the effective barrier height.

For an infinitely long JJ, the effective potential for the
escape of a fractional vortex close to the depinning current
can be derived analytically, as shown in Ref. 38. Here, only
the main results are summarized. The barrier height is given
by

�

U

thermal
escape

u
0

R CI
c

I

V

a) b)

�
0

FIG. 1. �a� Resistively and capacitively shunted junction model.
�b� Particle in a tilted washboard potential. The thermal escape from
the metastable state is indicated by an arrow.
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uv = EJ�
4

3
��c�3/2�3F�−1/2�1 −



c
�3/2

, �8�

with

F =
2

3
sin

�

2
�sin �c − c�c� , �9�

�c =
�

2
− arcsin�c� , �10�

and the depinning current c��� given by Eq. �1�.
EJ�=�0jcw
J /2�=EJ
J /L is the Josephson coupling energy
per normalized unit length and jc the junction’s critical cur-
rent density assumed to be equal in 0 and � parts. Here, we
use uv and reserve u0 as the barrier height for the homoge-
neous phase escape �short-junction limit�. The small oscilla-
tion frequency Eq. �5� in this case is given by the eigenfre-
quency of the fractional vortex. In absence of a bias current
the eigenfrequency is given by23,24

�0��� = �p�1

2
cos

�

4
�cos

�

4
+�4 − 3 cos2�

4
� . �11�

For �0 the analytical expression for �0�� ,� is unknown
but can be approximated as

�0��,� 	 �0��,0��4 1 − � 

c���
�2

. �12�

For LJJs of finite length one may use a numerical ap-
proach and follow the ansatz described by Castellano et al.34

As in a pointlike JJ the thermal activation occurs over a
barrier that is defined by the energy difference between a
minimum and the lowest adjacent saddle point/maximum of
the potential surface. The corresponding phase distributions
are solutions of the stationary sine-Gordon equation

�xx − sin�� + �H�x�� +  = 0, �13�

where H�x� is a step function that describes the position of
the 0 and � region

H�x� = �0 for x � 0

1 for x � 0.
 �14�

For a linear-junction geometry at zero applied magnetic field
the phase obeys the boundary conditions

�x�−
l

2
� = �x� l

2
� = 0. �15�

Here, ��x� is the Josephson phase, which is a continuous
function of x, the spatial coordinate x is normalized to the
Josephson penetration depth 
J and l=L /
J is the normalized
junction length. The subscript x denotes the derivative with
respect to coordinate x. The potential energy of any state
��x� is given by

U = EJ
1

l
�

−l/2

l/2 �1 − cos�� + �H�x�� − � +
1

2
��x�2dx .

�16�

Let us denote the solutions corresponding to energy minima
as �a�x� and the ones corresponding to saddle points/maxima
as �s�x�. Then, the effective barrier height is

u = U��s� − U��a� , �17�

which is defined for each pair of �s and �a.
For an annular geometry it is more convenient to rewrite

and solve the sine-Gordon Eq. �13� for the �discontinuous�
phase ��x�=��x�+�H�x�

�xx − sin � +  + ��x = 0, �18�

where �x is the derivative of the � function. The vortex is
placed at x=0, which in annular geometry corresponds
to x= l, and the following boundary conditions are used

��0� = ��l� + � ,

�x�0� = �x�l� . �19�

If ��0, then the topological charge of the vortex is −��0.
Note, that all static solutions of Eqs. �18� and �19� also
obey27

 = �−1��1 − cos ��cos ��0� − sin � sin ��0�� . �20�

Here, ��0� denotes the phase value at x=0. By inverting the
signs of � and ��0�, Eqs. �18� and �19� can also be applied to
a vortex with positive charge. Equation �20� is particularly
useful if a shooting algorithm is used to find solutions of
Eqs. �18� and �19�.

For �=0, the effect of junction length �and an externally
applied magnetic field� on the phase escape in linear LJJs
has already been discussed by other authors.34 In the follow-
ing we will summarize some of the results, particularly im-
portant for the situation discussed in this paper. That is, we
do not consider an applied magnetic field. In short junctions,
l��, the barrier height u is identical to u0 for any , i.e., the
value obtained from the short-junction-limit formula �4�. The
phase configurations corresponding to minima and saddle
points are homogeneous, i.e., ��x�=const. In longer junc-
tions, l��, phase escape via additional inhomogeneous

e
n
e
rg

y
U

coordinate
x

phase �

0

�

FIG. 2. LJJ in the picture of a particle chain in an extended
potential.
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saddle solutions of lower potential barrier Eq. �17� results in
u�u0. This is easily understood, as the energy required for a
homogeneous phase escape increases linearly with junction
length whereas it is constant45 for the alternative process,
that is, the creation of a fluxon/antifluxon and its successive
propagation along the junction. However, the nature and ul-
timate existence of the saddle solutions depends on bias cur-
rent . As it turns out, at dc bias close to the critical current,
c−�1, which is of primary relevance in experiment, usu-
ally only one minimum and one saddle-point solution re-
mains. For junction lengths l�9 and bias currents
�0.99c, the barrier heights u even coincide with the
short-junction value u0. In annular junctions the length at
which the phase escapes via inhomogeneous phase configu-
rations is 2� instead of �, as boundary conditions require the
creation of a fluxon-antifluxon pair. As in linear junctions,
the barrier height u coincides with u0 for �0.99c and
l�12, which is the longest junction considered here.

Now, how does the presence of a fractional vortex, i.e.,
����0, affect the phase escape? In the following we first
consider an annular geometry, where junction boundaries do
not play a role. The influence of open boundaries on phase
escape is discussed in Sec. V. Figure 3 compares the effec-
tive barrier height u��� at =0.99c��� for different junction
lengths. Here, u is normalized to EJ� to avoid a normalization
that depends on JJ length. The analytic result uv��� for l
=	 is also depicted in the graph. As can be seen, the pres-
ence of a vortex facilitates the phase escape by lowering the
effective barrier height. The larger the vortex, the easier is
the escape. Figure 3 also shows that with increasing junction
length, u��� asymptotically approaches uv���—the analytic
result for an infinitely long junction.

For further discussion it is important to note, that although
u strongly depends on bias current, numerical calculations of

u�� have shown, that it scales as �1− /c�3/2 close to criti-
cal current with a prefactor almost independent of . This is
very convenient, as u, uv �compare Eq. �8��, and u0 �compare
Eq. �6�� exhibit the same asymptotic behavior for →c.
With their relative proportions independent of , they can be
easily compared with experimental data.

IV. EXPERIMENTS

For the experiments we used tunnel Nb-Al-AlOx-Nb an-
nular LJJs �ALJJ� with different junction radii R. The junc-
tion properties are specified in Table I, the specific capaci-
tance of all junctions is C��4.1 �F /cm2. The Josephson
penetration depth 
J was estimated taking into account the
idle region.39 The normalized length of the ALJJ is given by
l=2�R /
J.

To create an arbitrary � discontinuity in the junctions, a
pair of tiny current injectors is used, as shown in Fig. 4. The
short section of the top electrode between points A and B of
a length �
J has an inductance Linj. A current Iinj passing
through this inductance creates a phase drop
�=LinjIinj2� /�0 across the distance AB, i.e., the � disconti-
nuity. To calibrate the injectors we have measured the critical
current Ic as a function of Iinj for the left injector pair in Fig.
4. The Ic�Iinj� pattern is presented for the shortest junction
with R=30 �m in Fig. 5 and looks like a perfect Fraunhofer
pattern in accordance to the theory.26,27,40 The first minimum
at Iinj

min corresponds to �=2�. The values Iinj
min are given in

Table I. Thus, for any Iinj, the corresponding value of � can
be calculated as �=2�Iinj / �Iinj

min�.

TABLE I. Junction parameters �annular� at T=4.2 K.

R
��m�

w
��m�

jc

�A /cm2�

J

��m�
l Iinj

min

�mA�

30 5 134 37.9 5.0 7.4

50 5 87.8 46.7 6.7 7.0

70 5 72.6 51.4 8.6 6.5

FIG. 3. Effective barrier height at =0.99c as a function of �
for different annular junction lengths. The gray line corresponds to
the analytic result from Eq. �8�.

top Nbbottom Nb

R
20 µm

Iinj

I

V

A

B

FIG. 4. Optical image �top view� of one of the investigated
samples: ALJJ with two pairs of injectors. The right pair of current
injectors was not used during experiment.

FIG. 5. The dependence c�Iinj� measured at T	4.2 K �gray
symbols� and the corresponding theoretical curve c��� �continuous
line�.
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The escape of a fractional vortex in an ALJJ is experimen-
tally investigated by measuring the statistics of switching of
the junction from the zero-voltage state to a finite-voltage
state. To do so, a bias current applied to the junction is

ramped up at a constant rate İ and the current Ic at which the
junction switches from its zero-voltage state is recorded.33

The probability distribution P�I� of such switching currents
is found by accumulating a large number of measurements of
Ic and generating a histogram. Using the obtained P�I� dis-
tribution, the bias-current-dependent escape rate can be re-
constructed as33

��I� =
İ

�I
ln

�
I

	

P�I��dI�

�
I+�I

	

P�I��dI�

, �21�

where �I is the width of the bins on the histogram. The
shape of the histogram depends on the bias-current ramp
rate, the bath temperature T, and damping.41 Higher T leads
to a broader histogram shifted toward lower currents. Note,
electronic noise in the measurement setup has, to the first
order, the same effect as the increase in T. Since the accuracy
of our measurement is defined by the width of the escape
histogram, special measures were taken to suppress elec-
tronic noise down to the level where the broadening caused
by electronic noise is well below the one caused by the bath
temperature. We mounted the sample in a copper box to
shield it from electromagnetic radiation and in a cryoperm
cylinder to shield it from static magnetic fields. The bias
lines contained three-stage low-pass filters: two cold filters in
close vicinity of the sample and one at room temperature.
The measurement technique and setup are similar to those
described in Ref. 42.

Following the analysis method used in Refs. 33, 34, and
42 we fit the escape rate ��I� calculated from the measured
histogram using Eq. �21� with the known escape rate of a
pointlike JJ, see Eq. �7�, having the relative barrier height
u /u0 and cIc0 as fitting parameters. The damping-dependent
prefactor was assumed to be a=1.

The effective barrier height found in this way is shown in
Fig. 6 for three different junction lengths at a bath tempera-
ture T=4.2 K. Solid circles indicate experimental results and
the black solid line corresponds to numerical simulations.
For all junction lengths, the experimental data are in good
agreement with simulations, in particular, for large � values.
In the range of small values of the discontinuity �, the de-
viation from simulations increases with junction length.
There are two possible reasons explaining the deviations.

First, this might be due to junction inhomogeneities. For
large ���, only the 
J vicinity of the � discontinuity is impor-
tant for the escape whereas for ���→0 the whole junction
matters. The longer the junction is, the higher is the prob-
ability for inhomogeneities, thus the deviations are more
dominant for longer JJs.

Second, our calculations are based on a single-mode ap-
proximation, which becomes less accurate and even fails in
the limit ���→0 and l→	.38 This happens because the

eigenfrequency of the lowest eigenmode �0 and the next
ones �1, �2, etc., are not well separated at the values of bias
current where the escape takes place. At first, it seems that at
→c the eigenfrequency �0→0 while �1�c� stays finite.
Therefore there is always a region around c, where
�0��1, regardless how small is the separation between �0
and �1 at low , say, at =0. However, the peak of the
escape histogram �even in the case of quantum escape with
the rightmost position of the histogram� is not sufficiently
close to c in order to keep the condition �0��1 satisfied.
Then it is important how much �0 and �1 are separated at
those values of  that are most relevant for the escape pro-
cess. This separation is roughly proportional to but much
smaller than �1�0�−�0�0�. In the limit l→	 and ���→0,
according to Eq. �11�, �0�0�→�p while the the next mode
�the lowest mode in the plasma band� �1=�p. Thus, the
single-mode approximation fails. To make it working again
one has either to increase ��� or to reduce l. By increasing ���
one shifts �0�� ,0� downward from �1=�p, according to Eq.
�11�. By decreasing l one increases the wave vector
k1=2� / l of the lowest mode in the plasma band, thus, shift-
ing �1�0� up as

�1�0� = �p
�1 + k1

2 = �p
�1 + �2�/l�2.

Thus, a single-mode approximation starts working again for
short �pointlike� JJ and any �. Note, that participation of
higher modes in the escape makes the escape rate higher, i.e.,

FIG. 6. Effective barrier height u��� for different junction
lengths l at T=4.2 K. Solid circles correspond to experimental re-
sults, white lines to theoretical predictions for infinite 0-� LJJ, and
solid lines to numeric simulations using the sine-Gordon equation
in ALJJ of given length. Dashed lines show barrier heights for
pointlike junctions with rescaled c.
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the barrier height calculated using a single-mode formula
lower, exactly as observed in Fig. 6.

The corresponding barrier height of a pointlike JJ is also
depicted in Fig. 6: the dashed line indicates u0 for pointlike
junctions with a critical current c���Ic0, given by Eq. �1�. If
the only effect caused by the � vortex is the suppression of
the critical current of the junction, the experimental data
should coincide with the dashed line. However, the experi-
mental data and simulations deviate from this curve, which
becomes more pronounced with increasing junction length.
This indicates a difference in the escape process of a point-
like junction and a long junction with a � vortex.

The white line in Fig. 6 corresponds to the analytic result
from Sec. III for infinitely long JJs. Comparing this result to
simulations and experimental data, three regimes can be dis-
tinguished: a homogeneous regime �small ���, light-gray re-
gion in Fig. 6�, an intermediate regime �moderate ���, gray
region in Fig. 6� and a vortex escape regime �large ���, dark-
gray region in Fig. 6�. In the homogeneous regime, the es-
cape process corresponds to the one of a pointlike junction:
the phase string escapes as a whole from the metastable state.
The effective barrier height corresponds to u0 in this regime.
In the vortex escape regime, the escape process is dominated
by the vortex itself and experimental data, simulations, and
theory coincide.

Temperature dependence

In the thermal regime, the effective barrier height u does
not depend on the bath temperature T, see Eq. �6�. For tem-
peratures well above the crossover temperature to the quan-
tum regime,31 which for our samples is �100 mK, the u���
dependencies measured at different temperatures should co-
incide. For lower bath temperatures, T�4.2 K, the
damping-dependent prefactor a in Eq. �7� becomes
important.41 To account for this unknown factor, we fit the
escape rate ��I� calculated from the measured histogram not

only with the barrier height but also with the junctions’s
resistance R assuming moderate to low damping43 with

a =
4

��1 + �QkBT/1.8u� + 1�2 , �22�

where Q=�0RC is the quality factor. Using this method, the
uncertainty of the experimentally obtained u��� dependence
increases.

Figure 7 compares the barrier height determined at
T=500 mK for two annular JJs of lengths l=6.7 and l=8.6
with the already shown results at T=4.2 K, cf. Fig. 6. The
resistance values obtained from best fit are R=480 � and
R=433 �, respectively, corresponding to Q values of
�2000, . . . ,3000. Note, the escape rate � only weakly de-
pends on R, which leads to relatively large uncertainties in
the determined R values ��50%�. Though the method of
determining u is less accurate for lower temperatures, the
measured u��� dependence shows very good agreement with
numerical simulations.

V. LINEAR JUNCTIONS

To study the effect caused by the junction geometry we
have also measured linear LJJs with different lengths. As
shown in Ref. 44, the c��� pattern of linear junctions differs
from Eq. �1� due to the open ends. It is 2� periodic, has
minima at �=�+2�n and depends on junction length.
Calibration of the injectors follows the same method as de-
scribed for annular junctions, however the first minimum of
the Ic�Iinj� pattern corresponds here to �=�. Knowing the
values Iinj

min, the corresponding � can be calculated as
�=�Iinj / �Iinj

min� for any Iinj. Note, in contrast to annular junc-
tions, c��� depends on lengths l and has to be determined
numerically. In addition, only vortices with ����� can be
investigated with the experimental technique described
above. For further details see Ref. 44.

For the experiments, we used Nb-Al-AlOx-Nb linear LJJs
with different lengths, as shown in Fig. 8. The junction prop-

TABLE II. Junction parameters �linear� at T=4.2 K.

L
��m�

w
��m�

jc

�A /cm2�

J

��m�
l Iinj

min

�mA�

120 5 84.2 53.5 2.3 4.9

240 5 78.5 55.4 4.4 5.0

FIG. 7. Effective barrier height u��� for two different bath tem-
peratures T in the thermal regime. Symbols indicate experimental
results, gray lines show theoretical predictions for the vortex es-
cape, and solid lines show numerical simulations.

top Nb

bottom Nb

L

20 µm

w

FIG. 8. Optical image of one of the investigated LJJs with one
pair of injectors.
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erties are listed in Table II.
In Fig. 9 the results for linear LJJs are shown for

T=4.2 K. Experimental data and numerical simulations
show a very good agreement. On the other hand, a compari-
son of experimental data and theory shows that even in the
case of the longest junction with l=4.4 the experimental bar-
rier height is considerably lower than the asymptotic value
uv��� even for high values of �. Note that for annular junc-
tions all three �experimental data, numerical simulations, and
analytic calculations� are in good agreement. This discrep-
ancy is due to the junction geometry: the escape in linear
junctions is usually dominated by the nucleation of a fluxon-
antifluxon pair at the edges. Only at very large l a crossover
to vortex activation takes place. At the same time, the ob-
served � dependence suggests that boundary dynamics are
affected by the presence of a fractional vortex. This becomes
clear if one compares numerically simulated u��� dependen-
cies for two junctions with different geometry, as shown for
the longest junction with l=4.4: the dashed line in Fig. 9
corresponds to an annular junction of the same length. The
obtained barrier heights differ in shape and absolute value.

Figure 10 compares simulated barrier-height dependen-
cies on � of linear junctions with different lengths to the
theoretical prediction uv��� for infinitely long JJs. Only in
rather long junctions �l�9� and for high values of � the
escape mechanism caused by the fractional vortex becomes
important. For l�9 and small � the edge effects dominate
the phase escape.

VI. CONCLUSION

We have experimentally investigated the thermal escape
of an arbitrary fractional Josephson vortex close to its depin-
ning current c��� in long JJs of different geometry. A com-
parison of our results with numerical calculations based on
the perturbed sine-Gordon equation shows very good agree-
ment. Depending on the junction’s geometry, our results co-
incide with theoretical predictions in different regimes of �,
except in the limit �→0 and l→	, where our model, which
is based on a single-mode approximation, fails.38
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